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ABSTRACT

OR is the standard method for finding all the eigenvalues of a symmetric tridiagonal matrix. It produces a
sequence of similar tridiagonals. It is well known that the QR transformation from T to T is backward
stable. That means that the computed T is exactly orthogonally similar to a matrix close to T. It is also
known that the algorithm sometimes exhibits forward instability. That means that the computed T is not
close to the exact T.

For the purpose of computing eigenvalues the property of backward stability is all that one requires. How-
ever the QR transformation has other uses and there forward stability is wanted.

This report analyzes the forward instability and shows that it occurs only when the shift causes premature
deflation. We show that forward stability is governed by the behavior, in exact arithmetic, of a pair of vari-

ables and we establish tight upper and lower bounds on their derivatives with respect to change in the shift

parameter. BN 1Y
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/ 1. Summary and Notation

)
’

( 1.1 Introduction

- This study is in the area of matrix elgenvalue computauons

2 The Householder-OR algomhm has become the standard method for diagonalizing a symmetric
matrix. First the matrix is reduced to tridiagonal form T by a technique introduced by A. Householder in
1958. Next the tridiagonal matrix T is diagonalized by successive apphcauons of the QR transformation
with shifts. Moreover it is well known&(se&[.Mhnson—ehap—?—}-)—that the OR transformation is back-
ward stable. That means that the computed transform is exactly orthogonally similar to a matrix close to the
old one. It is also known to the experts){ See-f Witkinson, 1958 J, [ Golub.& Kahan ] and [ Stewart, 1970 )
WR transformation sometimes exhibits forward instability. That means that the computed output is
far from the result obtained with exact arithmetic. For the purpose of computing eigenvalues and eigenvec-
tors the property of backward stability is all that one requires. However the QR transformation has other

uses and in some cases forward stability is desirable.

“This report analyzes the forward instability of QR and shows that it occurs only when the shift is
very close to eigenvalues with a special property-For some matrices there may be no eigenvalues with this
property and in such cases the algorithm is forward stable for any value of the shift. The study was
prompted by the discovery that the dominant factd' determining instability is the sensitivity of several key
quantities to small changes in the shift parameter. This sensitivity dominates the effect of perturbation in all
the other variables. {

e \ .
The technical contributions of this study are: LR (’

1)  The observation that instability is equivalent to premature deflation that occurs when the
shift is almost an eigenvalue of several consecutive submatrices;

2)  Establishing the central role of a certain pair of variables associated with each plane rota-
tion used in the algorithm. It is the evolution of the norm of this 2-vector that governs the
accuracy of the computed angles.

3)  Bounds on the derivatives of the cosines of the rotation angles and other key quantities.

4)  Upper and lower bounds on the last components of normalized eigenvectors in terms of
eigenvalues.

1.2 Organization of this study

This first section gives the summary of this study. Along with it, the notation conventions to be used
in the discussions is presented.

In section 2, the QR transformation is defined and several examples are exhibited to show that somé
times the QR transformation on T is forward stable and sometimes it is not. Also in saction 2, severa
needed spectral properties of T are described. An useful result is Theorem 2.3 that gives upper and lower
bounds on the last element of a normalized eigenvector of T'.

In section 3, the implementation of the QR transformation on T is discussed. In the process, the
important intermediate quantities are introduced along with the relations among them. -

In section 4, these quantities are analyzed in terms of the shift 6. The main results of this effort ate F
1) the derivatives of 1:, . cM ( to be defined in (3.1.2) ) will attain their extrema at the eigenvalues of T, ; 2)
if some eigenvalue A®) of T, is very close to some eigenvalue A®~ of T,_;, the absolute values of
dny,/d o, dc,/do for 6 in the vicinity of this special A*) can be large.

In section §, the intermediate quantities produced in finite precision arithmetic by a particular QR
implementation are formulated into a convenient matrix-vector form and the influence of the roundoff
errors is represented by a tridiagonal error matrix. The important usage of this error matrix is in the Per-
turbed Commutative Law which is used to explain the forward instability of TOR . m/
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1.3 Notation

Throughout this work we will use T to denote the real nxn symmetric tridiagonal matrix. In general,
upper case Roman letters will denote matrices, lower case Bold letters will denote vectors and lower case
Roman letters will denote scalars. Upper case Greek letters are used for special matrices ( usually diagonal
), lower case Greek letters are also scalars.

The matrix /, denotes the kxk identity matrix. The matrix 7; denotes the k—¢k leading principal
submatrix of T. The norm 111l is the Euclidean norm. The transpose operation is denoted by * (e.g. M' is
read M transpose ).

1.4 ( More technical ) Summary

The actual algorithm used to implement the QR transformation employs a sequence of plane rota-
tions in planes (1,2), (2,3),(3,4), .., (n—1, n ) that change T, into T, by chasing a certain bulge in the
tridiagonal form down the matrix and off the end. The proof that this process is equivalent to the formal
definition of the QR transform ( namely (i) T -1 =QR; (i) T =RQ +61,) depends strongly on the
unreduced property ( to be defined in section 2.2 ) of T. In a finite precision environment we must antici-
pate a divergence of these two processes when any subdiagonal elements B, (2<k <n ) are small
enough, except for the last one. In other words it is not surprising that small B, (k < n ) causes forward
instability in QR .

Nevertheless this possible closeness to reducibility is not the only cause of instability. The purpose of
this study is to elucidate exactly how forward instability can occur both with and without small B,
(k<n).

Forward instability, if it occurs, is quite dramatic. The cosines of the rotation angles, ¢, ¢3, ..., Ca_
exhibit the following behavior. Up to some k <n—1 the computed and the exact ¢; have the same
exponents which eventually diminish to log (roundoff unit }2. For i 2k the true |¢; | continues to
decrease while the computed | ¢; | increases in such a way that the products [ ¢; ¢; | = O (€). This holds
until | ¢; | <&. As | ¢; | diminishes even further, | ¢; | stays close to 1 unless B; suddenly drops. An iso-
lated vanishing of ¢; (i < k ) does no harm.

One result of our study is that forward instability is always associated with "premature deflation”. In
the scenario given in the previous paragraph it ;‘)lgens that after rotation k the elements (k-1,k),
(k,k~1),(k,k+1), (k+1, k) are all on the order of Ve Il T 1. The shift appears in position (k, k ) and is
correct to working precision. If row k and column k are deleted from the new matrix to obtain T*’ then the
eigenvalues of T’ will be the remaining eigenvalues of T, to within working accuracy. If the shift is a
well isolated eigenvalue of T, then its eigenvector can be constructed from the rotation angles up to k.

The occurrence of forward instability is not connected with the presence of clusters of close-
eigenvalues in T,. It is caused by the shift being an eigenvalue of T;_; and T, ( to working accuracy ). It so
happens that when this occurs the shift will be an eigenvalue of all the principal submatrices Tj_;, Ty, Ti+1
«s ITn, ( to working accuracy ).

We have described mstabxlny in terms of the cosines ¢; because they are more familiar. However a
better indicator of stability is (n?+c,2B3;)"2 where n; is one of the variables that appears in TOR . See
section 5 for more details.

1.5 Application to the Lanczos Algorithm

In general the algorithm TQR ( tridiagonal QR ) is forward stable for all choice of shifts. However
there is an important application where instability is endemic and it was the gradual realization of this
uncomfortable fact that led to our study.

The Lanczos iteration produces a symmetric tridiagonal matrix to which a new row and column are
added at each step. At the end of step k the algorithm has produced tridiagonal T, and an extra number
Br+1- Ty represents the projection of some given linear operator A on a special & -dimensional subspace.
These growing tridiagonals are special because, as k increases, some eigenvalues stabilize. In other words
an eigenvalue of T, appears to be equal ( to working precision ) to an eigenvalue of Ty,; and to an eigen-
value of T,.,,, and so on. These stabilized values are eigenvalues of the linear operator A on R". In an
implementation of the Lanczos algorithm it is convenient to get rid of these converged eigenvalues by
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deflating them from T, . At first sight this appears to be impossible because at step k ( k < n ) the matrix
T, is not fully known. However this deflation is possible and even occurs nawrally ( in exact arithmetic )
when the QR algorithm is applied to T},; with the cormrect shift. The unknown component in position
(k+1, k+1) is not altered when the QR transformation is halted at step k. It is only necessary to delete
row and column k.

What happened to us was that we did not always know the correct value k. When the QR transfor-
mation was forced to continue beyond the right place then the results were terrible. As a resuit, the
deflation by QR failed and the resulting tridiagonals were wrong. Of course deflation had occurred earlier
but we did not look for it. The process had encounted forward instability. In the spirit of knowing your
enemy this investigation was launched.

2. Background Information

This section covers the definition of the QR transformation and its relation to eigenvalue deflation
and eigenvector calculation for a symmetric tridiagonal matrix T. The examples in section 2.3 show that
the QR transformation on T can sometimes be violently unstable in the forward sense. For easy reference,
several needed spectral properties of T are collected into section 2.4 from [ Parlett, chap.7 ]. Theorem 2.3
gives upper and lower bounds on the bottom element of a normalized eigenvector.

2.1 The QR transformation

This well established procedure is described in several books; e.g. [ Wilkinson, chap.8 ], [ Stewart,
chap.7 ], [ Parlett, chap.8 ], [ Golub & Van Loan, chap.7 ]. Here we will reproduce only what we need of
the standard results. Our notation follows [ Parlett, chap.8 ].

For any square complex matrix A and any scalar { o } (called the shift ) that excludes A s eigen-
values, the associated QR transformation A — A is defined as follows:

i)let A—-al=QR. the unique unitary upper triangular decomposition with the diagonal ele-
ments of R being positive.

ii) define A =RQ +ol=0Q"AQ.

One important property of the QR transformation is that both the upper Hessenberg form
(A =(a;;) with a;; =0 if i>j+1) and the Hermitian form (A = (a;;) with a;; = a;; ) are preserved. Our
concern here is with real symmetric tridiagonal matrices, A =T, and this form is preserved in the QR
transformation since T is both upper Hessenberg and Hermitian. Only real shifts are considered in our
investigations.

2.2 Eigenvalue deflation and eigenvector calculation

A well known result ( see [ Wilkinson, pp 469-471 ] ) connects QR with eigenvalue deflation and
eigenvector computation,

Definition 2.1: A symmetric tridiagonal matrix T is called unreduced if its subdiagonal elements are
nonzero. :

Remark: When T is unreduced the QR transformation is well defined for all shifts o because the first
n-1 columns of T — ol are linear independent for all G.

Lemma 2.1: ( QR and deflation )
Let T be unreduced and T be the QR transform of T with shift G, i.e.

e ———————————————————————
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T:=Q°TQ = RQ +ol (22.1)
whereT — ol = QR.Ifo =X\, an eigenvalue of T, then

(1) lastrow of T has the form (0, ..., 0, );
(2) last column of Q , namely q,, satisfies

Tq, = q,\ (222)

Here Q is orthogonal and R is upper triangular.

Since T =T ©A where T has order one less than T, we say that A has been deflated from T in one
sweep of QR transformation. It is clear that the spectrum of T consists of the remaining eigenvalues of T,
Also from Lemma 2.1, we see that when A is deflated from T, its corresponding eigenvector is revealed in
Q, namely its last column q,.

2.3 Some examples

In this subsection, we show, by example, that Lemma 2.1 is not a reliable guide to results in finite
precision computation. Example 2.1 will show a successful deflation and Example 2.2 will show a failure.
Example 2.3 will exhibit the success of deflation on the failed case in Example 2.2 after two sweeps of
OR have been applied. Example 2.4 is an interesting case of success despite having a shift ¢ that is an
exact eigenvalue of several of T ’s leading principal submatrices.

The data given in the following matrices have been multiplied by 10* for the purpose of better
presentation. The transformed T here is generated by the numerical implementation of QR called TQR,
which will be described in section 3.2.

Example 2.1: ( the successful case )

F 66833333 14899.672 3
14899.672 33336.632 34.640987
34.640087 20028014 11.832164
Te = 11.832164 20.001858 10.141851 23.1)
10.141851 20.002287 7.5592896
75592896 20.002859 |

“

The eigenvalues of this matrix are:
AM=0, =10, A3=20, A,=30, As=40, Ag=40000.

The shift is A, = 0. The matrix T after one QR sweep is:

[ 39999.925 54.726511 )
54.726511 33.404823 8.3017268
. 8.3017268 24.730751 8.8065994
8.8065994 21.646903 7.2175779
7.2175779 20.292461 -~7.943d-12
~7.943d-12 ~2.344d-15 |

\

The last row of T is negligible as we expected. For comparision, here is T computed by a method
other than TQR.




¢ 39999.925 54.726511 )
54726511 33.404823 8.3017268

. 8.3017268 24.730751 8.8065994

Te = 8.8065994 21.646903 7.2175779

72175779 20292461 -1.113d-14

{ -1.113d-14 9.520d-13 |

The matrix elements of these two transformed 74 are almost identical except the bottom ones. How-
ever, they are negligible.

Example 2.2: ( The failed case )
The matrix T is the same as the one iu Example 2.1. The shift is As. The matrix T after one QR

sweep is:

[ 19.989995 14.142133 A

14.142133 20.003002 11.832160

. 11.832160 20.001858 10.141851

e = 10.141851 20.002287 7.5593584 (232)

7.5593584 20.730517 -170.56153

-~170.56153 39999.272

\ 4

The last subdiagonal element is not negligible. For comparison, here is T computed by a method
other than TQR.

r 19.989995 14.142133 3

14.142133 20.003002 11.832160

, 11.832160 20.001858 10.141851

Te = 10.141851 20.002287 7.5592896 233

7.5592896 20.002859 -1.608d-13
-1.6084-13 40000.000 |

.

Examples 2.1, 2.2 have shown that the transformation with g = A, is stable and the one with ¢ =4
is unstable. Examination of the eigenvalues of the leading principal submatrices of T¢ ( see table 2.3.1 in
Appendix A ) reveals that A matched the biggest eigenvalues of T5, T4, and T'5 to almost full working pre-
cision. On the other hand A, is not close to any eigenvalues of T3, T4 and Ts.

Example 2.3:

The tridiagonal matrix T is the same as that in Example 2.2. We applied the QR transformation

once more to the " T'¢" " exhibited in Example 2.2 keeping the same shift A = 40000. The resulting

matrix is:

( 19.979990 14.142125 3

14.142125 20.006003 11.832161

1) 11.832161 20.003716 10.141851

& = 10.141851 20.004574 7.5592897 234)

7.5592897 20.005717 8.425d-15
8.425d-15 40000.000 |
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The last subdiagonal element is now negligible.

Example 2.3 has shown that, in one case at least, TQR will take two sweeps to get the deflated Ts.
Examination of the eigenvalues of the leading principal submatrices of 7'§" obtained by first QR sweep
with ¢ = A¢ reveals that the first QR sweep does no more than destroy the closeness of the eigenvalues of
T¢'s leading principal submatrices, ( see table 2.3.2 in Appendix A ).

Example 2.4: ( successful deflation in an interesting case )
The matrix T in this example is the well known second difference matrix. The data are the original

ones.
21
1 -2 1
Ts = 121
1 -2 1
1 -2

The eigenvalues of this matrix are:

M=-2-Y3, A==3, A3==2, Ag=—~1, As==2+73,

The shift is A, = — 2. The matrix T's after one UR sweep is:

~2.0000000 1.4142136
1.4142136 -2.0000000 0.70710678
Ts = 0.70710678 -2.0000000 1.2247449
1.2247449 -2.0000000 0.000000
0.0000000 —2.00000000

One can verify that A, is also an eigenvalue of the first and the third leading principal submatrices of
T's. This example shows that even if the shift is an eigenvalue of some of the leading principal sub-
matrices, nevertheless QR deflates T in one sweep.

2.4 Spectral properties of a symmetric tridiagonal matrix T

We give here several results that we need later. They are applications of Cauchy’s Interlace
Theorem, see [ Cauchy, vol. 2].

Theorem 2.1: If T is unreduced then

(1) the eigenvalues of T are distinct;
(2) the eigenvalues of T's consecutive leading principal submatrices interlace with each other.

For proof, see [ Parlett, sec. 7-7, sec. 7-10 ], { Cao, chap. 2 ].
Definition 2.2: spread(T ) = Apax (T) — Apin (T ).

Theorem 2.2: If T is unreduced, then the subdiagonal element 3, satisfies the following inequality:

if n>2, | By | < spread(T)/2, for k=2,..,n;
if n=2, I By | < spread(T)/2.

—
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Definition 2.3: Let
x(0): = det(Ty — ol ); 24.1)
& = 1(0) / Y-1(o). 24.2)

where Ty, is the k-th leading principal submatrix of T .
Since y,, is not monic it differs from the characteristic polynomial of 7, by a factor (- 1 )t.

Notation 2.1: We denote the eigenvalues of T by \; and label them so that
M<h< o <A,

Notation 2.2: Here we denote the bottom element of the normalized eigenvector of A; by ;.
In our applications we need 1/ ®; so we present our results in that form.

Lemma 2.2: IfT is unreduced, then

1 % ()
_ = =R 243
o? Xn-1(2; ) )
For proof, see [ Parlett, chap.7 ].
Theorem 2.3: Suppose T is unreduced. Let us denote the eigenvalues of T,_, by W; so that
/ B < 2 € "0 < Uamy
then
i [ Mook i=1
Iy Vi ’
1 Aimhiag Ay - .
— > A , i #1n; (244
o? Ai=Pie Wik )
b_iﬂ-—l i =n:
L Ay —Haoy’ ’
and
[ A'n - A'l
—_— i=1
My — Ay
1 l, - x'l }"n - l’l .
— < A . i#1,n; 24.5
w? WRTHTHEY ¥ (24.5)
A =N
— i=n.
L A'u — Ha-t
1 % A)
Proof: —_— = - by (2.4.3).
o? Xn-1{2: ) y( )
Since
A n-l1
Xn(c) = I-I (xj —o)i Xa—l(o) = l-l (IJ-, —6)’
j=1 j=1
then
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’ d A=l
XalXi) = = JI (A-=-N) Xaa(N) = TT (i %)
j=l,jwi J=l
And
I (X -%)
— = L2 , (2.4.6)
0).
' IT (i =)
ji=1
ey PR .
-, =1
j=1 Wi—M ‘
I T .
= ¢ » 1 #1n; 24.7)
| jl:Il A -y jr-Ii W~ "
n-ll'_xl _
, =n.
(j=1tn Wy
By Theorem 2.1

lj < '.l.l < Xj+1, j=1,...,n-1.

Therefore each factor in the products in (2.4.7) is positive and is bigger than one. That is to say the
formulae in (2.4.7) satisfy:

[ M-
Ty Vi

A=A Aag—X

o? L TR TS

A = Ay

L kn"“u-l'

i=1;

i#1l,n;

The reorganization of (2.4.7) reveals that

ﬁ A=A - L P
j=1 W= Hi-A jaa =M
A=A A Ay =)
;‘I;Ix A - ;n-a Wi -
R = T N e I = Ty
A = Micy (,-I:I, VTR T (j!.-[ﬂ T
MIA =R A A 2R - Ay

,-r.Ill..—u,- T A Mact jay Al

i #1,n

s i=n

Since A; < W; < A4, each factor in the above products is positive and each factor in the pro-
ducts on the right hand sides of equal signs is smaller than one. That is to say the above formulae
satisfy:
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[ A i=1
B= A
1 ;‘i_ll }‘u—li .
—_ < < i #1,n
o ° ) K A
b ien
. g P

3. Implementation of the QR transformation

This section develops the usual implementation of the QR algorithm applied to a symmetric tridiago-
nal matrix T. In the process, the important intermediate quantities are introduced along with the relations
among them.

Most of the material is standard, see { Wilkinson, chap.8 ], [ Stewart, chap.7 ], [ Parlett, chap.8 ] and
[ Golub & Van Loan, chap.7 ]. However all the results are needed in the next section.

In the following discussion, we assume that all the tridiagonal matrices in question are unreduced
since otherwise the problem decouples. We also assume that the offdiagonal elements B, (2<k <n)of T
are positive.

3.1 QR factorization of T — o/

The desired QR decomposition can be carried out by pre-multiplying the tridiagonal matrix T ~ o/
by a sequence of plane rotation matrices Ry ( 2 <k < n ) defined as follows.

—S; Cy * & k~th row G.1.D

The duty of R, (2<k <n ) is to annihilate the (k, k—1) position of the matrix on the way to an
upper triangular form. The formulae in step (k) are important for the analysis in section 4.

Let

r 3
a-c P

B, x-o-
T-ol = c
Ba
Bs 0n -0 |

It can be shown that at step (k) (k <n ):
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F €2 G2 %
RkRk-l”'RZ(T‘c[) = ék Ck x (3.1.2)
T CeBin
Besi %410 -
L J
where
& = (nd + B2 G = cp-16eBe + k(0 - 0)
Cx = Re1/&y sk = Be/Ce (3.1.3)
T = =5 BeCr1 + (o —O).
Atstep (n):
F & & x
R Rui " RYT ~0l) = R = R. (3.1.49
En Ca
| Tn
& & X
(T-0ol) = Q S = QR
& Ca
Ty
with

Q = RIS --RL.

We collect some direct consequences of this decomposition that are used later.

@:
x@=0 -0c=m,
1:(0) = &+ Exmi, 2<k <n. 3.1.5)
(Y): IfT is unreduced, then
E, 20, s %0, 25k <na (3.1.6)
AM): IfTis unreduced, then
m(6) =0 ifandonlyif (@) =0, 1<k<n G.1.D

In words w, vanishes only at eigenvalues of Ty. So does ci . by its definition.
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Lemma 3.1: The detailed structure of matrix Q is:

[ c1c2 )(=5De3 C=s2H=S2)ca © + C1(=82)l=5n) |
§2 €23 cx-s3)cas .
tpt [ 53 €acs . .
Q =RR3---Ry = Se .. } . (3.18)
* Cu-1€x  Cn-1(~5n)
S Ca
. P

3.2 The QR transformation
. In this subsection, we look at the inner loop of the QR transformation. The formulae
T=Q'TQ =RQ +0l in(22.1),R in (3.1.4) and Q =R% --- R! in (3.1.8) suggest a way to transform T
into T without forming Q.
First let us collect the essential quantities in the QR factorization derived above. If we define

sy =0, ¢ =1, m=0,-0
then the necessary elements of Ry, 2<k < n, can be generated by the following loop:

For k=2,..,n
& = (k. +BE)"?
C =T /&
st =P /&

~ T = - SiBrcry + (04 ~G).
)
Now, let us look at the diagonal and subdiagonal elements of matrix RQ + of to find out the formu-
lae needed to compute the matrix elements of T .

By the formulae (3.1.4), (3.1.8), RQ + o/ can be presented as follov:vs:

. § [ €2-5263 - cy(=52).(=5,) )

gl CZ X 53 €€y ° ¢ .

.o 53
+ ol
&u c‘ * Cn-1Cn Cu-1(—Sa)
b9

L " J Sa Ca

. P

If we denote the diagonal and subdiagonal elements of T by &, and f, respectively, direct calculations
reveal that, for2<k <n,

Bk—l = EySi-1r

&t-l = &epgh + LSy + 0,

= EpcoiCh + CroiCiPas + 52 0y =0+ 0, L =cp 0B + se(0p — 6) by 3.1.3),
Cr1Tkmy + Cho1ChPrsi — €2 04 — G) + 0ty Ty = &xcp by (3.1.3),

Ce1Tk— — Cr( Ca( O —~G) = BrsaCr ) + O,

Cr1Mp—y — Cp My + O

W

ﬁu = Ry Spu»
a, = M, c, +O.
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To organize the computation it is convenient to introduce a new quantity v, :
Definition 3.1:

Y: = TpCy, k=1,..,n

The relation between ¥, and ;. in terms of ¢;, sx, By and o, is

N = ®e,
Y =Ctz((!¢-0’)—‘{.-1sk2. 2<k <n.

The above formula is derived as follows

ey = (—SePecr-1+ (o —0)) e by definition of , in (3.1.3),
- SBrcr e + (g - G),
- SESkTp—1Chy + C2( O — ),

since Cgﬁg = Ti-15k from (3.1.3).

Linking all the above relations together, a compact algorithm emerges. We list this algorithm in
detail in (4.1.1.) and name it in this study by TQR. It is essentially the algorithm used in the well known
EISPACK collection of routines.

Example: In the following. the computed c,’s, 7, ’s from TQR in Example 2.2 ( sce section 2.3 ) are
listed. The resulting T is exhibited in (2.3.2). For comparison, the correct c;’s and m;’s are also
listed. The resulting T is exhibited in (2.3.3).

computed correct

k Ci Ck

1 +1.0000000000000d +00 +1.00000000000004 +00
2 —9.1287087206375d 01 -9.1287087206375d 01
3 +7.9096456588243d 04 +7.90964565943004 -04
4 -2.3388300212821d-07 ~2.3408762727625d 07
5 —8.0658942646820d 07 +5.9381746504385d 11
6 +4.2662106420853d -03 -1.1223688023196d-14
k T T

1 -3.3316666666667d +00 ~3.3316666666667d +00
2 +2.7399802074030d -06 +2.7399802074446d —06
3 -2.76734199032744-10 ~2.7697632729029d4-10
4 ~8.18030999534324-10 +6.0232682537306d 14
5 +3.22498154322644-06 ~1.9058339689554d -17
6 -1.7056308317811d-02 ~-1.6080662764449d -17

3.3 Analysis of the QR transformation

Section 3.2 reveals the relations between the quantities of ¢;, 5;, 7, and the matrix elements o, , B,
in one step. This is inadequate if the analysis in terms of ¢ is needed. In the next lemma, we present several
matrix-vector relations between all the intermediate quantities generated in the QR process and the matrix
T. It is these relations which will help us understand QR more deeply. These relations also tell us the
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structure of an eigenvector when ¢ happens to be an eigenvalue of T'.
Recall the partial reduction of T — of to upper triangular form as it appears at step (k). It is given in

(3.1.2).
The product of the plane rotation matrices R 5, ... , R, satisfies:
[ €3 ~§2¢3 + * -+ C1(=$p)...(=s) 1 7
§2 €263 - ’ ,
53 ;
RIRS -~ Rf = ' (33.1)
3 * " Cr-1Ck Cr-1(=Sk) : -
Sk Cx |
i
L Vint |
The k-th column of (3.3.1) plays a crucial role in our analysis.
Definition 3.2: We denote by y, the following vector in R*.
c1(=52) " = - (=s¢)
ca=s3) " - (=5x)
Yii = (332
Ce-1(=52)
Ci
Definition 3.3: We denote by ¥, the following vector in R*. r
Ye
Ji: = Ry ---Rie = 0. (33.3)
0

Equating the k. row of \3.1.2), the following matrix-vector relations emerge.

Lemma 3.2: [If T is a symmetric tridiagonal matrix of order n and © is an arbitrary real number, then
the quantities derived up to step k in TQR satisfy

Ty — 40 = me, + CePrileas k<n, (3.34)
NTy - 0 N2 = w2 + c2Bla, k<n, (3.3.5

) (Ty-0%) = e = % = G)TH ~ 6,  k<n, (3.36)
T3y ~ 5.0 = mae,. (33.7)

Proof: Equate the k~th row on each side of (3.1.2) and transpose to get
(T-of XRy "Ri)ey = (T~ol)fr = meep+CePrrilra

Since (3.1.2) holds for k < n, (3.3.4) is true for k < n. (3.3.5), (3.3.6) are the direct results of (3.3.4).
(3.3.7) is a special case of (3.3.4) since B,y =Owhenk =n. MW

We use notation ¥, instead of q, since the former is slightly different from the k—th column q, of
matrix . Whenk =n, ¥, =q,.
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Lemma 3.2 used T and ¥, . Equally important is the relation between T, , the leading k <k submatrix
of T,and y,.

Corollary 1 of Lemma 3.2: Foranyreal G,
T,y - Yi0 = mef®, 1<k <n. (3.3.8)
O (Teyr—ox) =mcr =% = )’ Taye — O, ksSa (3.39)

Proof: Taking the first £ rows of (3.3.4) and using the notation in (3.3.2), the formula in (3.3.8) is
obtained for k < n. When k = n it is the case in (3.3.7).

(3.3.9) is the direct results of (3.3.8) and (3.3.2). W

Corollary 2 of Lemma 3.2: If o is an eigenvalue of Ty, then

Tyye — 0 =0, (3.3.10)
Ty — 50 = ciBesrsr,  HWTH — oo ll = L oePrat 1, (3.3.11)
S = W)'Teye = Gu)' THe. (33.12)

Direct consequences of (3.1.7), (3.3.8), (3.3.4), (3.3.5), (3.3.6) and (3.3.9).

Definition 3.4: We denote by t, the following vector in R>.

T
ty: = cxBen (3.3.13)

4. Properties of 7, ,,c, and t,

The main results are (4.1.12) and the tight bounds on the derivatives of &y, ¢, and |1t |1 with respect
to 0. See Theorems 4.1-4.5.

4.1 Basic properties.
We label the eigenvalues of T, so that

AR <A < -0 < A

For easy reference, TQR and relations (3.1.7), (3.3.8), (3.3.2) are restated here.

TQR: @“.1.1)
s1 =0, ¢, =1, ny = Q -0, T =/ =

for k=2,..,n do

By =(mi + p? )2
s =Py /&
Cy =Ty /&
Ry = - S Precry + (O — )
Y =X — ) = 5
Ot = Y1~ T + O

k-1 = By

—

6l=1tusm &H=Yn+0"




-

-15-
Relation (3.1.7): If T is unreduced, then
n(c)=0 ifandonlyif o =2A®, 1Si<k, 1sksn 4.12)
c(6)=0 ifandonlyif o =A%"D, 1<i<k-1, 2<k<n @4.1.3)
Relation (3.3.8): (Ty —ol,)ye = m e, 1Sk <n @4.14)
Relation (3.3.2):
c1(=52) " (-5)
e = : ' Yive = 1. 4.1.5)
Ce-1(=sx)

Ci

Some preliminary results:

Corollary of Relation (3.3.8): When o =A®, then y, in (4.1.4) is its eigenvector for T.

Notation 4.1: We denote the bottom element of the normalized eigenvector of A by w;x.
i=1,2,.,k, k=1,...,n.

Corollary of Relation (3.3.2): When o =A®,
Or = = a(A®) 20 i=1,2,..k, k=1,2,.,n (4.1.6)

This is the direct consequence of (4.1.5) and (4.1.3).
We now discuss the smoothness of 7, (G), ¢, (0), for g € (— oo, o).

Lemma 4.1: If T is unreduced and cy, sy, ;. are the functions computed by TQR ( see (4.1.1) ), then
Cks Sk» T, Ity || are real analytic on R.

Proof: It may be verified that
n2 = det{ T, — ol 1/detl (Tyy — 6131 )* + Bler_jei ],

Therefore x? is a rational function of order 2k /(2k—2) with no poles on the real axis. Therefore =,
and &, = (nZ, +B2)"? are analytic on R for k =2,...,n. Since &, >0, lit, Il >0 it follows that
Cx» S and 11, 11 are also analytic on R. Note that 17 — 6% as G — oo,

We want to show that x? is a weighted harmonic mean of the (A®) - ¢)%,i =1,.. k.

Premultiply both sides of (4.1.4) by (T} — 6 [, )"'xi! to find

%_ = (Tu -l ) e®, for &#A®. @a.1mn
%

A consequence of the spectral factorization is

(eP)Y(Ty-ol, )Pe® = .-%W(%c—)’_’ for o#A®. (4.18)
Since yiy: = 1 by (4.1.5), (4.1.7) yields
RLE = (e )Y (T, -0l )%e®. (4.1.9)
Combine (4.1.8) and (4.1.9) to find
i - iz:;‘( F‘:’)Z—G %, for o=A®, @.1.10)m
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Applying Lemma 4.1, a fundamental relation between =, ¢, and their derivatives with respect to o
is obtained. f (o) =df (o)/do.
Lemma 4.2;: Forallrealo

Tecr —Ce My = 1 @.1.11)
Proof: Differentiate (4.1.4)
-V + (-0l yy = meef.
Multiply by (y; )* and recall the definition of y, in (4.1.5)
—(NY%e + ()Y (T -oh)y = oM.
The result follows since (¥, )'yx = 1and (y; Y'(Ty —=ol,) = m(e®) by @.14). m

Recall that t;: = (7, cxBra1 )™

Corollary 1 of Lemma 4.2: Foranyreal ¢

Mt 1 1110 1 sin 2 (ty, te) | 4.1.12)
= ltyxty)

= I meCaBrar — MeCeBra !

= 1Bl by Lemma 4.2

= Bkﬂ-

Discussion;

Relation (4.1.12) tells us that It i will be huge if lexl Isin (¢, t.) ! is tiny and Bg,; is
moderate. In order to understand the behavior of |it, |l deeply, a detailed analysis has been made on the
behaviors of x; and c;, of which it Il consists.

4.2 Properties of T,
In this subsection we investigate the betiavior of m,, 2 <k Sn forge (— oo, o),

Corollary 2 of Lemma 4.2:

m(M) = - .

1
c(A®) Wy

Proof: Since x, (A*?) = 0 by (4.1.2), relation 4.1.11) at A® becomes c, (A™® ) me(A® ) = ~ 1. Since
c(A®) =aw;, #0by (4.1.6), (4.2.1) is obtained. W

1<i <k “2.1)

Corollary 3 of Lemma 4.2: For any eigenvalue \*) of T,,,
m(0) = m(A®)(o-A®)yi(o)y. A\™).
Proof: Rewrite (4.14) as
(Ti-0+0-A" )n(AY) = em(A¥) = 0.
Premultiply by y{( &) to get
7 (0)c(MP) = ~ (o - A*)yi (@A™
and then apply Corollary 2 of Lemma 4.2,
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Corollary 4 of Lemma 4.2:
m (A®) =0, 1<i <k

by(4.16). B

We now turn to the behaviour of , for all other values of &.

4.22)

Proof: Differentiate (4.1.11): my ¢y — ¢y % = 0. Setc=A", thenm, =0 by (4.1.2) and ¢, = w;, #0

Lemma 4.3:
w® < O, for =A%, @23)
Proof: Differentiate both sides of (4.1.10)
1 . d W}y
-——m = —_—— for o#A®. 424
" E:l(l.'(k)"ﬂ)3 ) N @24
Differentiate right hand side of (4.2.4)
0
3 E A~ 0)4 4.2.5)
Differentiate left hand side of (4.2.4)
) 3, -2
-— + =~ . 4.2.6
= p e (m) ( )
Therefore for ¢ # A%
S S B v Ok 3 (my by (4.2.5) and (4.2.6)
m 2 aP-c) = y e o
w2, w2 1
=3 .gl s —0)2 z o - 0)4 - 3¢ -N—E ) using (4.1.10)
(0,‘2*
BRI S apey
0
- ( z _MT’_?-')_’ 21 using (424)
2 0. by Cauchy-Schwarz Inequality.

Moreover equality holds if and only if the following two vectors
(Dl'k .. mk*

- {
) = ( Kl(k)-o" , l(t) )
W O & '
2= (g )
(A -0y (AP -o)?
are proportional. That is to say:
AW -g= - =aA®-g,
or
AP =AM

That contradicts the conclusion of Theorem 2.1 in section 2.4. Therefore
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——l—s—u,:(o) > 0, for o=A®.
i

Recall from (4.1.2) that x, (0) # O for & # A*). Therefore
-mm > 0, for c=A®. ]

Corollary of Lemma 4.3:
n = 0, for o#A®. @427

Lemma 4.3 shows that the algebraic function x, (o) is like the characteristic polynomial of T}, in that
it vanishes at the eigenvalues of 7,. Moreover it is alternatingly concave upward and downward in the
intervals bounded by the eigenvalues of 7.

The next result is a direct corollary of the proceeding lemmas and Theorem 2.3 in section 2.4. We
illustrate it in Fig. 4.1 which shows that r, attains its extreme values at the A®),i =1, ..., k.

X \ﬂ ! \_V ) ’ “K \ vv )
M i) = 7
x\%) de /\\
t
. \
7 \ / :
™ £ ' -
o = \ - AN
1y " N /
7/——7‘/ e e -
S |
[ M \
) , \
, \:\‘ 3 - & \ \\
' \
Theorem 4.1: The derivative of the function . (G) computed by TQR satisfies ‘
k) _ (0 , A — A ®
MO o i M) 2 i (4.2.83)

l,(k-l) - ll(k)

AR A -A®
L.(k) - ll.(fi-l) }s,'“—l) _ Ai(k)

M(k-\) - )“l(k) '

< [m(A*)P
NN YORE YO RO

[mCA®) 1P BB e |t Lk @28
AR - A®) . AL _ A
MO AED i < (MOM)P < (4.2.8¢)
- ;\t—l lk - l'k—l
and
r (AR} 1, e (-0, AP

Im@) ! S| max[ I m(A®) Lim(AR) 1] oe (AW, AR, i=1,., k-L;

I o (AP 1, ge (AP, ).
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Proof: By(42.7): m, # 0 for o=AM®), Apply Corollary 4 of Lemma 4.2
=0 for o=A®.

Thus on each [A®, A%]1fori=1,..,k-1, x, has its only stationary points at the ends.
intervals (~ oo, A{* ] and [ A{¥’, =0 ) the stationary points are A{*’ and A{¥). Therefore

Im(o) ! € max [ | =e(A®) 1, T (AR 11, for i=1,.. k-1
Use (4.2.1) to find that
T(A®) = -1/, for i=1,..k,

For the

Apply the bounds for 1 /m.-z, in Theorem 2.3 on T, the formulae in (4.2.8a), (4.2.8b) and (4.2.8¢)

are revealed. R

We now give a pointwise bound on  that reveals the role of the distance of & from the spectrum of

7, and from the spectrum of T;.;. Some preliminary results are restated for easy reference.

A) & = (md +BH? see definition in (4.1.1)

Ty
B) o= —é‘T‘- see definition in (4.1.1)
C) 5= Pé see definition in (4.1.1)

2
. s

D) a-= E:— k-1 derivative of (B)
(EY moe -am=1 for any real ¢  (from (4.1.11))
F) (T -olL)y, =mne® for any real o ( from (4.14))

Definition 4.1: 1,: = w (o) = lrsxljrsxkl AP -al, k=12, .,n.

G) p?<nw for o=A®

Proof of (G): (F)'(F) yields

() (T -o, Py = n
Then
pt =  min_ (o~ AR )2 by Definition 4.1,
= Auin ((Te =01y )
< ( 3 Y(T: — ol )y, ¥: carnot be an eigenvector since ¢ # A{®)
= 7‘&- [ |

We now present one of our key technical lemmas.
Lemma 4.4: Foranyreal o,
m(o)Im ! = Im | o =AW
m(o)im |l < Iml G % AW

Mea(S) Im ! < sim b+ (pia(o) + B2

(4.2.92)
(4.2.9b)
(42.10)

Proof of (4.2.9a,b): When o= A® then m, =0 by (4.1.2), p, =0 by definition and (4.2.92) holds. Now

suppose that ¢ # A*). Premultiply (F)by (T, ~c6 I, ) 'n,”',

y—k = (Ty -cl, )-‘ e{").
L

Differentiate (4.2.11),

4.2.11)
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I3 1: _ n'
y& k 1‘2 yk k = (Tk - CI& )"2 ek(k)- (4.2.12)
k

Differentiate yJy: = 1 to obtain y}yx = 0. Premultiply (4.2.12) by y/, getting

L
= T
n?

Thus

and

= (3 ) (Ty-ol, ) 2e® since yiy; = 0

(3 ) (T ~0 1 )7 yeimy, by (4.2.11).
-m o= (N)(Ti-0) ye m,

Il = 1 (g Y(Te=oh )y | 1wy L. 4.2.13)

Since o # A{*), y, will not be an eigenvector. Therefore

() (Ti-ohL )yt < ','ma-xllv'(T, —ol)'vl

N(Ty-al)tn
1 1

min AP -1 W
15isk

Put this inequality into (4.2.13) and multiply by 1, to obtain (4.29b). W

Proof of (4.2.10): When ¢ =A%*"" then y,_, = 0 and (4.2.10) is immediate since B, # 0 and s i, | 20

by (3.1.6) and (4.1.2). p
Now suppose A%, )
Imgcy + 11 =lem | i by (E)
skz 3
= = | My me | by (D)
&
< Imal, o by (4.2.9b)
€ Mo * y &
2
Sk ngRg |
= Tk by (B)
et y (B
Hence
2
. Sk ICkﬂk |
(I, —_—+1
k Ck uk-!
Since ¢ =A%, ¢, #0 by (4.1.3). Then the above inequality can be rearranged as
4 2 Hi-1
m-llﬂg| < 5 'ﬂk’+ oo 1
k
2 &k
=Sk|m'+m-l'7‘51’ by (B)
iy +BE 2
=s2|1r,,l+u,,_,( s+ Bi ) by (A)
! Ry |
Llf-x 172
=sdim |+ (i +BE?—)
k-1
<sZIm |+ (pd, + B2)H)2 by (G) n
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The geometric interpretation of inequality (4.2.9b) is illustrated in Fig. 4.1. Since the graph of n, is
concave downward or concave upward, we have
’ | T | | T |
Ime | = < , for a#A®,
* di e .

The d, is defined on Fig. 4.1.

Theorem 4.2: For any real ¢
3 spread(T; ) 3(“. spread (T )
2m(o) ' 2 He-1(0)

Proof: Recall the definition of &, in (4.1.1): 7, = ¢ (0@ — ) — Prsicr. Thus

In(c)!l < min[ 1+ ) 1. 4.2.14)

Ime ) = lep (0 —G) — Beseca |,
<log-cl + 1B 1, since lcg 121 for 2<k<n
= log-AB+A®W-c1 + 1B 1, choose closest eigenvalue
S log =A® 1 + W + spread(Ty) /2, by Theorem 2.2
< spread(Ty) + W + spread(T}) /2, since o € (A, A®]

e + 3spread(T, )/2.

Now (4.2.9b) in Lemma 4.4 yields

| A <1+ 3spread(T,‘).

Im! < (4.2.15)
* He 2,
Next we use the definition of r, in a different way.
Iml <lglloyg-cl + 1B, 1,
=lc |l -AfD+atD_g1 + 1B, 1, choose closest eigenvalue;

| cx 1(spread(Ty) + Wy ) + spread(T;)/2,  since Af* Ve [AW, A0 ],

A

So
s im | < s@ ey \(spread(Ty) + Weey ) + s@& spread(Ty) /2

< (spread(T,) + Wey ) /2 + spread(T:) /2, since | spcx | £172.
= Wey /2 + spread(T}). 4.2.16)

Next we bound the term (p2_, + B2 )2 on the right hand side of (4.2.10).

(pdy + BE)2 < (&, + (spread(Ty)12)? )2 < pyy + spread(T,) /2. 4.2.17)

Add (4.2.16) and (4.2.17) to get
2w |+ (i + B2 < -32-( ey + spread(Ty)). 4.2.18)

Substitute (4.2.18) into (4.2.10) to find
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Im < 31 4 Preeddy) 4.2.19)
2 M1

The combination of (4.2.15) and (4.2.19) yields (4.2.14). B

* Note that p, and p;_; cannot vanish simultaneously by Theorem 2.1 in section 2.4.
Theorem 4.2 shows that n,(0) can only be huge if o is very close to an eigenvalue of 7, and an
eigenvalue of T;_;. For instance when | &, |1 21 1, (4.2.14) implies
He 3V He-1 3Ve
< , < .
spread (T, ) 2(1-Y) spread(Ty) — 2-37

4.3 Properties of c;,; and 534

In this subsection we investigate the behavior of ¢, Sg41, 1 Sk < n-1 as functions of the shift G.
For easy reference, we collect the previous results that are needed.

, Sk+1Ck41 - T
H) s =-——F—m derivative of (C)
e, B -
d)y cwm =- —?—( e )+ 3 T, derivative of (D)
k+1 k+1
) mm <0 {or o#A\® (from (4.2.3))
K m(A®) = ~ — from (4.2.1
X) p(A) o, ( @42.1))
Lemma4.5: Foro=A™, i=1,..,k,
C‘:I z 0. (43.1)
Proof: !
. 3, B2 , Za .
Cest = = —55—6’"1 (m ) + B;ﬂ s by (D).
Ein &in
However
- 3im | Bkzn . Btzu o
legm | = ———(m)* + Im |, by J)
* é&sﬂ §k3+l
2
> B’;“ TR
+1
> 0. by (J) again. W
Lemma 4.6:
cra1 (M) = 0, 15i <k @4.32)

Proof: Use (I) and observe that =, (A®)) = 0,1Si<k by Corollary 4 of Lemma 4.2 and
(M%) =0,1<i<kby(4.12). =

Lemma 4.7: c,,; ( ©) reaches its extremes at the A*’ and then
m(A®) 1

Brat - B 0 4

e (A®) = 1<i<k 4.33)

Proof: Since ¢,y € C!(- oo, o), Lemma 4.5 and Lemma 4.6 show that c,,; reaches its extrema at A%
fori =1, ..., k. Therefore
s&a (A®)

by L S () L
Cen (™) (x2+PE ) m(A), by (D) and (A)
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- B,,l 1 me(MD), by (4.1.2) and (4.1.3)
1
= - —— b n
Br1 @i x y (K)

Theorem 4.3: The derivative of function c,,,(0) computed by TQR satisfies

AP - A
AFD AW

lék) - Al(k)

< [ Bkﬂck,-o-l ( M(k) ) P M(k—l) _ A{k) !

(4.3.4a)

AR AR AR -A®
l'.(k) _ A‘.(fi-l) }"_(k—l) - )vi(k)
[ ﬁk+lcl;+1 ( A'iw ) ]2

< [Braicra (A®) PP
li(k) _ xl(k) A'k(k) - ki(k)
K',(k) - )'i(il-l) X'_(k‘l) _ )“,(k)

i #1,k, (434b)

D~ A8

A = A
AP AED

< [ PBesices (A®) 12 ———e;
OB

(4.3.4c¢)

and

Fep (M) 1, oe (—w, AP);

| Ck'+l (O') I < max | J Ck’+l(li(k)) l’ I ck’+l(;'-i(-ﬂ) | ] g€ [ki(k)1 A'x(-t? ]’ i= lv---’k_l;

L Icl’-l-l(xk(t))l» ce[l*a)’m)'

Direct consequences of Lemma 4.7 and Theorem 2.3 in section 2.4.

Di ion;
Lemma 4.5 tells us that ¢, is like the characteristic polynomial of T, in that it vanishes at the

eigenvalues of T;. Moreover it is alternatingly concave upward and concave downward in the intervals
divided by the eigenvalues of T,. The direct result from this geometric property of ¢, is that

|Ck+]| iCkll
< +

lcry | = A , for o#A®, 435
k+1 dk+l ™ ( )
as shown in the figure Fig. 4.2, '
-
} Ceni ) Cewd L0 )
|
/ !
-7 7/ |
/ ! ,\ \f
C y ! 1l 4 T
! o e——rrdin
\ : '

A\




-24 .
The inequality (4.3.5) can be changed into:
W lcem | S lega! < 1, for any real o.
However, this bound can be improved.
Lemma 4.8: For any real o,
Be lcem | < 172, (4.3.6)
Me D Sp | < 172 4.3.7)
Proof: When o=\ then p, vanishes and the assertions are vacuously true. Now we suppose that
o= AL,
. sk2+l ’
Ht‘Ck+1|=§_—llk“tk|, by (D)
=
5
< =2 im, using (4.2.9b)
By
=5 e 1, by (B)
<172, since | spqCeq | < 172
Similarly
, b SparCian | ’
utlskﬂ':—_—g——uk'“k', by (H)
| SpaiC kﬂl
= iy, by (4.2.9b)
, Eent
= ¢t | sem s by (B)
< 1/2 since | sy 6k ) S 12and 1 ¢y 1 <1. B

As before we need to complement the proceeding result with another that involves the eigenvalues of
Tk+l-
Lemma 4.9: Foranyreal ¢

Meat VG | < 2 (4.3.8)

Proof: When o=A%*" then ., vanishes and the assertion is vacuously true. Now we suppose that
o # A%, As beforc

| fparciar | = 11 + TratCrar |, by (E)
<1+ Ink+1| le+1|,
| Ty .
<l+ —— gyl using (4.2.9b)

k+1
Multiply each side by pg4/! ey | to get

. He+1
Mear | Cear | < . + legn b,
I ey |
<l+lcgul <2 by (G). =

The above lemmas are summarized into the following theorem.
Theorem 4.4: For any real ¢

1 2
, 3 439)
21 Hew ¢

L ey | < min|
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From Theorem 4.1 and Theorem 4.3 we see that derivatives of 7, iy at A% can be huge if
{ ;, listinyor | By | istinyor | @; , By ! is tiny.

4.4 Properties of t,
This subsection concentrates on t, = ( 7, (0) + ¢¢(6) By4y ). Since Il te b = ((mp )2+ (cx Brar V2
the results in sections 4.2-4.3 can be applied here to bound lit; |l as the following theorems show.

Theorem 4.5: For anyreal ¢

P22 < [py + —g-spread(T,)]z + spread’(Tp.,). 4.4.1)
p2 g h? < %[u,_, + spread(T)® + 11—6spreadz(n,,). 442)

Proof: Use (4.2.15) and (4.3.8) to get

pEime 12 < [ + %spread(T,‘)]2 and p2lc 1? < 4.

Therefore apply Theorem 2.2 to get (4.4.1).
Use (4.2.18), (4.2.10) and (4.3.6) to get

Blm 12 < 3 lme + spread(TP and wdale(1? < o

Apply Theorem 2.2 to get (4.4.2). H

Theorem 4.5 shows that when o is far from the spectrum of T; and T;_;, )t || has modest magni-
tude even when the spectra of T; and T, have elements that are very close.

Remark 1: A similar result on i t, Il to Theorem 4.1 and Theorem 4.3 could be derived. However it is too
complicated since | m; | is related to the spectra of Ty, Ty and | ¢, | is related to the spectra of
Ty-1, Ty and the magnitude of ;. We present a simplified one.

Theorem 4.6: The norm of vector t, at eigenvalues of T, satisfies

Mk) - Al(k)

Pyl < MM < (A,

A AR A AR : : .
AL A& kiatn_l,-a) < mMP < MM, i=2,.. kI

AP - AH) , e

——as < [mOE)P < (M),

VORIV

Remark 2: It will be shown in section § that forward instability can appear at step k only if G is very close
10 an eigenvalue of T}

5. TQR in Finite Precision Arithmetic

This section studies the relations among the computed quantities generated by TQR using finite pre-
cision arithmetic. A central objective is to explain the different phenomena we have observed in the exam-
ples presented in section 2.3. It turns out that the magnitude of the exact I1t, Il ) sin (8, t;) | ( defined
in Corollary 1 of Lemma 4.2 ) governs the accuracy of the computed 11t, |1, and hence the accuracy of
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the

computed x, and c,. From a computational point of view, the role of IIt; !l I'sin (ti,t) | can be
replaced by the magnitude of the exact It |l ( to be shown in (5.2.6) ). The combination of analysis in
this section with Theorem 4.5 tells us that to have forward instability, it is necessary and sufficient that ¢
be simultaneously close to an eigenvalue of T, and an eigenvalue of T}, for some &k <n.

5.1 Perturbed commutative law

We analyze TOR in finite precision arithmetic. If v is an output of TQR in exact arithmetic then let v
denote the corresponding output in finite precision arithmetic. In particular

Definition 5.1: We denote by §,, the following vector in R*,

[ T5D) - 5
Eo-Fp) -+ (-F)
ig: = : . (5.1.1)
Ceat(=5)
. Ek

It is not the case that ¥, and =, are the output of TR acting on a perturbed matrix with the same
shift 6. Nevertheless ¥, and x; do satisfy exactly a perturbed version of the fundamental relation

(Ty ~oly)y, = me, k=1,.,n (5.1.2)
It ums out that
(Ty — ol + F)5 = me®,  k=1,..,n (5.1.3)
where F, is a tridiagonal matrix which is a small perturbation ( component by component ) of T,.. In fact
HF, I < 56spreade, spread = Apo(Ti) — Amin(Tk) (5.1.4)
provided that

Aoin(Th) € 6 S Amae(Th)-
For verification of relations (5.1.3) and (5.1.4), see section 5.3.
The significance of (5.1.3) lies in the following perturbed commutative law:

Lemma 5.1:  For any real o,
c(OPrnme(0) - (O (O)Prei = Bru¥iFrVe, 1Sk <Sn-L (5.1.5)

Proof: For simplicity, we drop reference to ©. Apply y; to both sides of (5.1.3)
YTy - Sl i + YiFsTe = mica.
Use (5.1.2) and multiply by B,; to get (5.1.5). B

5.2 Forward instability of TOR

In section 2.3, we saw that TOR is forward unstable in Example 2.2 and forward stable in Example
2.4. The interesting case is Example 2.4. Since the shift ¢ =-2 is an eigenvalue of T, ( the 3x3 leading
principal submatrix of Ts ), the computed ®t;(-2) will be tiny. Obviously, it has lost all significant digits.
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However the computed m4(~2) still preserves most of its significant digits, unlike Example 2.2 in which the
computed 1, (Ag) loses all the significant digits for k =4, 5 and 6, ( see table at the end of section 3.2 ). The
key difference between these two examples is the lengths of residual vectors ty(~2), k =1, ..., 5 in Exam-
ple 2.4 and the lengths of residual vectors t; (Ag), k =1, ..., 6 in Example 2.2 as shown in the following

table:
k e, -2)1 lit, (Ag) 1
(Example 2.4) (Example 2.2)
1 1.000000004 +00 3.649658204 +00
2 1.000000004 +00 3.16227602d-03
3 5.000000004 -01 9.358822714-07
4 5.000000004 -01 2.374081984-10
5 1.30404754d-33 448883862414
6 1.608066284 17

The lengths of 11¢,(~2) !l never go under the magnitude of O ( spread Ve ) except at last step. This is
what we expected for deflation to occur. However the length of 1!, (A¢) || has gone under the magnitude of
O ( spread Ve ) starting from step 4. The role of lit, |l is shown by the following relation.

Corollary of Lemma 5.1: Foranyreal G
@) N0l Isina(ty, TG )l = BralyiFu¥e |, k=1,..,n-1. (5.2.1)
where T,(0) = (M, GiBrw ) .
Proof: Use definitions of t, and T, and observe that the left hand side of (5.1.5) is the cross-product of
these two vectors. Therefore the absolute value of the left hand side of (5.1.5) is equal to
He (o)t GO Isins(t, T ). | |
A variation of relation (5.2.1) is
(@)l ity (0) - Tl Isino(te, & —T ) = Bear 1 YiFeVe |, k=1,..,n-1. (522)

The combination of relation (5.2.2) with Corollary 1 of Lemma 4.2 that
Hee 1 Nl dsin 2 (b, t) | = PBra (523)
yields the following important relation:

Theorem 5.1: Foranyrealcandk =1,..,n-1

Nt (0)-T () Isin 2(te, ty =T )1 = el Isin (b, ) 11 yiFL ¥, 1. (524)
The direct consequences of Theorem 5.1 are:
N (@) -T@N 2 Bl Isinz(t, )1 yiFy |, k=1,..,n-1, (5.2.5)
Bes | YiFr Yy |
al T T (5.2.6)
and
. Nt (0) ~T(@) N Isin £ (e, 8 - ) |
gy > Jh@-L@UIsne(b b =R (5.2.7)

| yiFr ¥ |

_
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Now we come back to relation (5.2.1)

Since | By,; YiF Y 172 is the AREA of the triangular defined by t,, T, and t, —T,. We shall describe
instability in terms of this geometric figure, There are three stages:

a)  stability
l\A(U\ . -~
[ S T
WAy )
b)  onset of instability ) $ \\ _
\3 '\.\ e E¢
.\
\
e )
characterized by relative error in Il t, Il such that
ey — T il _ e, =T Ml
T T A
c¢) full instability A
a3 | TETERE TR
\.
\ |
Ryl

We can expect to lose all correct digits in the greater of Im, | and Ic; | Bi4y when the triangle O, t,,
1, is equilateral:

i}llt.llz = —?lll’,,ll2 = Bra | YiFLY 1.

Example 5.1:

The matrix is the same as that in Example 2.2 with the same shift. The lengths of the residual vectors
from TOR at step k are presented. For comparison, the correct lengths are also presented to show the rela-
tionship between the accuracy of I, Il and the magnitude of lit, 1. It is not hard to observe that the pro-
duct of corresponding elements in first column and third column is less than spread €.

k Nt A E A ]I Nt (Ae) — T A1
1 3.649658204+00 3.649658204 +00 0.000000004 +00
2 3.162276024 03 3.16227602d 03 4.15999586d-17
3 9.358822714-07 9.358822714-07 2.421282684-13
4 2.374081984~10 8.51726993d-10 8.180912594-10
5 448883862414 3.22498160d -06 3.22498160d 06
6 1.608066284~17 1.70563083d 02 1.70563083d-02

—
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AW bW e

0.000004 +00
5.268364-09
2.58686d~07
9.60509d-01
1.00000d +00
0.000004 +00

Isinz(t,,,f,, -tk)l

1.000004 +00
1.000004 +00
1.000004 +00
1.000004 +00
1.00000d +00
0.000004+00

Another interesting example is one sweep of TQR on the following matrix:

T, = tridiagonal | 13

The shift is its largest eigenvalue. We exhibit the It 1, HE N, 1T —t 1, Vsin £(t, % )1 and
| sin £(t;, T, —t; ) | in the following table.




w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

HoN NN W

o o J 0w

.0030d+00
.6923d-02
.91714-03
.5516d-04
.5012d-05
.6932d-06
.07174-07
.5936d-08
.2259d-09
.42984-11
.2532d-12
.53044-13
.53044-13
.2532d-12
.4298d-11
.2259d-09
.59364-08
.07174-07
.6932d4-06
.5012d4-05
.5516d-04
.9171d-03
.6920d-02

.97044-01

.0030d+00
.6923d-02
.91714-03
.55164-04
.5012d-05
.6933d-06
.0730d-07
.0536d-08
.39844d-07
.81544-06
.3600d-05
.0680d-04
.9883d-03
.1848d-02
.7313d-01
.2659d+00
.29164d+01
.2999d+01
.3000d4+01
.3000d+01
.3000d+01
.3000d+01
.3000d+01

.3000d+01

w w o o

.0000d+00
.0000d+00
.0000d-14
.7620d4-13
.8893d~-12
.3561d-11
.2629d-10
.07424-08
.39644d-07
.8154d-06
.3600d-05
.0680d-04
.9883d-03
.1848d-02
.7313d-01
.2659d+00
.2916d4+01
.2999d+01
.30004+01
.3000d+01
.3000d+01
.3006d+01
.3077d+401

.3997d+01

o O O o

o O Ww»nm

o O

.00d+00
.00d+00
.00d4+00
.00d+00
.38d-07
.33d-05
.94d-03
.17d-01
.874-01
.884-01
.88d4-01
.974-01
.67d-02
.50d-04
.66d-06
.67d-08
.00d+00
.00d4+00
.27d-09
.274-09
.004+00
.00d+00
.004+00

.00d+00

.00d+00
.00d+00
.97d-01
.88d-01
.88d-01
.88d-01
.88d4-01
.88d-01
.88d-01
.88d-01
.88d-01
.97d-01
.67d-02
.50d4-04
.66d-06
.58d-08

.00d+00

0.00d+00

S O

.27d-09
.00d+00
.004+00
.00d+00
.00d+00

.00d+00
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The behavior of I, |} has gone through the three stages described before and the instability occurs
at step 8. However starting from step 13, the exact llt, Il begins to increase and the computed [T, Il still
keeps increasing. As a result, the angle between these two vectors has to shrink in order to satisfy the rela-
tion (5.2.1). Finally the triangular turns into the following form:

el
_‘/////'/// NA- 4 1)
1 T3

The interesting point of this example is that the computed 113,41 can be totally wrong even though
exact lltyy )l is not tiny. However, the instability occurred when 11311 was about O (spreade).

Explanation of forward Instability

The Corollary of Lemma 5.1, coupled with the behavior of yiF;y,, shows why instability must
occur in certain cases.

There are classes of tridiagonal matrices and shift ¢ such that Ilt, 1| can diminish with k£ to as small
a value as desired. Furthermore for small enough k the vectors y, and ¥, are nearly identical. As k
increases the last components ¢; and ¢; may decrease to 0(\’2), at which size ¢, could lose all its
significant digits. Nevertheless y, is an unit vector and y;¥; =1 (i.e. > 0.8 ). At this stage yiF,¥; is close
to the Rayleigh quotient of F; for y;, namely y;F, y;. For typical roundoff situations this Rayleigh quotient
will be of the same order as [1F; il. Recall from Corollary of Lemma 5.2 that || F, Il < 5.6spread(T;)e
when AL (Ty) £6 S AT,

CONCLUSION:

a) If Isineg(t,Ti—-t)} 2 ¥3/2 and He, W 24 (Beyy spreade)'? then
G, — gl Biet | YEF LY | < 36Brnspreade 1

= < < -,
e Mt W21 sin2(ty, G-t ) ) 16P,.; spreade 3 2

b) While | y{F5e | > %spreade, we have

NG -0 Brsr | yiFieYe | > Br+1 spreade
el e 121 sin 2 (b, G ~te) | 4t 12

Thus as |11, 112 drops below ( B, spreade )/4 so must the relative error in T, rise drastically above 1. This
is complete instability.

Note: we know of one special case ( see [ Demmel and Kahan ] ) when all diagonal elements of T are zero
and a variation of TQR with shift as zero forces this condition on the diagonal elements of the transformed
T. In this case it turns out that y{F,¥, is structurally zero for all k. Thus we can not prove that y{F, ¥, in
general remains above spread e/4 until complete instability ( yi¥y: = O (‘/E) ) sets in. However this is what
we observe.

5.3 Floating point version of TQR
In the following, we want to present a floating point version of the useful relation (3.3.8):
(T, —oly)yy = m el
Our model of error in floating point arithmetic is
A(xoy) = (xoyXl+e) 53.D)
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where o isone of +,—,xand /; fi(x oy ) is the floating point result of the operation o0 ,and | e [ < €,
where ¢ is the machine precision. Our analysis will be linearized using Wilkinson’s notation ( see { Wilkin-
son,pp113]):

If le,1<¢e,i=1,..,n and ne £ 001, then
[T(l+¢) = 1+ 10168ne (532

i=l

where 161 £ 1.

Lemma 5.2; Letc;,s; and n; denote the outputs of TQR in exact arithmetic with shift 6. Let ¢;, 5; and ;
denote the outputs of TQR in finite precision arithmetic with shift 6. Then the computed outputs from
TQR with shift o satisfy exactly the following relation:

(Ty -6l + F ) = m e® (53.3)

where

( (oy -0k, Bati2 1

B€21 (02— 0)ez2 Batas
Fy = Bataz
Br&r14

| e (o —0)ery |

and

| Ek,k | < 3.033, | Ek,k—l I < 3.038, | 8“‘” | € 2.028, for k = 1,2, veay M

Proof: We use mathematical induction.
Use definition of &, in (4.1.1) to find «r; = a; — 6. Hence by (5.3.1)

m=A(m)=A(~6)=(-6)1+&,). (5.3.4)

Use definition of =; in (4.1.1) and then (5.3.1), (5.3.2) to find
M = A(BrCii(=5) + (04 =G )
= Be( 1+ €4 )Cp1(-52) + (0 — G )( 1 +&x )iy (53.5)

with | g, | < 3.03¢, 1 g, | £ 3.03e because each quantity is involved in 3 atomic arithmetic
operations. Do the same thing for c,, s,

_ - = Ty - = Be(1+€y)
= ( - / = = » = / = s ‘
= A(me /&) _—_§t(1+€a) 5t = A(Be /&) 3
Then
Moy = Bela( 1+ N 1+84) = BeG( 1+ €y ), (5.36)

with lek-l.k | € 2.02e.

Now we start to put things into matrix form. Consider the case k = 2. Multiplying (5.3.4) by 55,

5y = (-6 )(1+€, )05, since & =1. (53.7)

Use (5.3.6) and (5.3.5) fork =2,
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5 = B 1+€2)0 = (-0 ) 1+8; )05 by (5.3.7)
m = Ba( 1 +8; )01(=52) + (0~ G )(1 + €52 )T
That is to say
B2(1+€12) El(-.-s-z) 0 538
z = 174 . (5.3.8)

Ba(l+83;) (op-0X1+8,)
The formulae (5.3.4) and (5.3.8) have shown that (5.3.3) is true for k = 1, 2. Now suppose the state-

ment is true for k = j. That is to say

[ (w-o)ve)  Balser)
Ba(l+eg1)  (0p— 0 X1+€35) PBi(l+e,3)

Ba(1+€32) : .
: ’ B;j(1+ej_1 ;)
Bj(l+£j,j-l) (aj - 0')(14'8,'.,')"

[ (y~o)1+g,)

J\
[ &5 5 ) 0
Ca(=53) - (55) .
X . = -} 539
. 0
S

Multiply by (~5j.;) on both sides of the above equation and use the results (5.3.6), (5.3.5) for

k = j+1, namely
(’F'-H)’—‘j =- Bj+l( 1+ €; i+ )Ej+1.

Bist( 1+ €41 )i (=5ja) + (Oju1 = O N 1 + €41 ju1 Wj1 = Ty

Now adjust the last row of (5.3.9) and add a new row to get
(y—0)(1+€1;)  Ba(l+en)
Ba(1+72))  (0-O)(1+4€22) Bi(l+€23)
Bi(1+€32) . :
: . Bj(1+g;-1)

Bi(1+ej 1) (o;—o)(1+€;;)  Bjaa(1+€j ju)
Bjs1(1+8j41) (0 1—ON1+€;41 j41)

LN

[ &5 Fa) ) 0

Co=53) -+ (=5ju1)

C;(~5j41)

C_j+l

.

By induction, (5.3.3) holds fork <n. W
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Corollary of Lemma 5.2 If
Auin(Tn) S 6 S Apu(Tn)
then
WF, I < 56spread(T,)e. (5.3.10)

where spread(T, ) = Arax(Tn ) ~ }‘mm( T,).
Proof:
(1) by Lemma 5.1
| € x | € 3.038. | €x k-1 I <303, | €p kel | €202, fork=12,..n;

2 1P| < spread(T,)/2 for 2<k <n, by Theorem 2.2;
3 log —c!l < spread(T,) for 1<k<n, by condition given,

then, abbreviating spread ( T, ) by spread ,

NF, ll. = m?x[ IBe€ep 1+ 1 (0 —C)epy I+ | Brar€rpa |]

A

%spread 1.01e + 3 spread 1.01e + -%—spread 1.01e

(3/2+3+1) 1.0l spread ¢
5.6 spread e.

In the same way,

A

WF, ll; < 56spread ¢.
Hence

WF, 12 = max M(F, )'F.)

| (F, )F, Il

W(F Y WLl F, i

WE, N, NFE, N

(5.6 spread € )*. [ ]

Al IANIA

Note: When o is outside the interval [A;n(T,), Amx(T»)] we can bound term la, -6 | by
W, + spread(T,). Therefore for any real ¢

WF, I < 5.6spread(T,)e + 3.03p,¢. (53.11)

5.4 Forward stability
In this subsection, we will present a forward perturbation analysis. It turns out that the instability can

occur only if o is very close to an eigenvalue of 7.
Definition 5.2:
S = T /0T, M= m /T
Recall that p, (6) = minl 6 — A% | and spread(T) = Apax(Ti) = Anin(T)-
)

Theorem 5.2 For any real G, if
w(o) > 12spread(T,)e, k=1,..,n (54.1)
then
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lﬁg -1 | 1
= ——— - =4 .0 '4'
Exgh) T < X k=1 n (54.2)

Proof: Let B, = (T, - 6/, )"'F,. Use (5.1.3) to find

9o = (Ty—cl, +F, )_lekﬁh
= (I +B, YTy —oh ) ey,

= (I +B, ) yu i /M. (54.3)

Premultiply by y; to get the main formula

Yite = yi +By) 'y, mu/my. (54.4)
(1) we show
HB, Il <€ 12, k=12, ..n (54.5)
NE
BN < W(Tp—cl) N UF I s —2—,
3.03,,e+5.6 ad (T,) e
< 220k u:” resd@i)e by (5.3.11)
< 1R, by 5.4.1). B
(2) we show
il +B)Y'y, >0, k=1,2,..n (54.6)
Y +By )y = 1 + T (1) yiBiy:
i=1
21 - Y usfn,
i=1
B, I
2l -1
1= 21Bll
T o1 - BN
> 0, by (5.4.5).
(3) we show by induction that
yith >0, mm >0, k=12, ..n (54.7)
Note that yi§; =1>0 and m;®; >0 by (5.4.4) and (5.4.6) with k = 1. Now suppose that
yj§; >0, mm; >0, (54.8)
then
n, w; A
il = ol (1+e) = oY (14¢) > 0. (54.9)
Ein Ejm Sin &

Reference to (5.1.1) shows that

' _ ot T = _ 1 o 1= - -
Yindin = ¥in¥ia/lyjull = —__Il'y' (yj9 0y, 5015541 + €jaaCjar )-
i#l

Since ;41 > 0, 5,41 > 0 ( because B;,; > 0 ) then by (5.4.8) and (5.4.9) we see that

Y;+lyj+l > 0.

Use (5.4.4) and (5.4.6) with k = j+1 to find =;,,7;,; > 0. By principle of induction, (5.4.7) is true
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fork=1,..,n.
(4) we show (5.4.2).
Take norms of (5.4.3) and use (5.4.7) to get:
i, = W +By )y, i

Use standard perturbation theory and (5.4.5) to find:

N +B )y I € W(I+B) N < 1

1 - UB Il
Let yo =(] +Bg)w. Then 1<(1+ 11B,11) llwll. Hence
1 _1
—_—— < (I +B I,
g S 1T +BO
Therefore
1 . 1
—_——— < mmy € ———.
T+ B 1~ ™™ = T
So
I — 1y |
bty = — - = S Bl < -;- n
Conclusion

Forward instability was introduced as the occurrence of a computed transform 7' that was far from
the exact T'. However our study concentrates attention on the forward stability of the rotation angles that
determine the similarity transformation. This is reasonable because wildly erroneous angles ensures both a
wrong T and also a vector ¥, that is not a reasonable eigenvector approximation. However even rotation
angles with high relative accuracy cannot guarantee that each computed element of T has high relative
accuracy.

In section 5.4 we have shown that the computed =, will not Yose all the significant digits if the shift ¢
is nowhere close to any eigenvalues of T;, j = 1,..., k. That is equivalent to say that instability can only
happen at step k if o has been very close to some eigenvalue of T;, j < k. However ¢ being close to an
eigenvalue itself does not provoke forward instability. Example 2.4 illustrated this fact.

We point out some main results of this study.

(1) The effect on c; and s, of changes in the matrix elements ¢; and B; is transmitted through
a perturbation matrix F,. By Theorem 5.1

NG ~t W isin 2(te, T —t) ! < Ut !l LyiF ¥,

and the amplification fac.tqr for the lyiFs¥:! is llt,' 11, the derivative with respect to ©.
Instability requires that lit, Il be huge. There is no need to compute the gradient of llt; ||
with respect to all the variables o; and B;.

(2) Formula (5.2.6) shows that

It - T 1l Besr 1Y2F.LYy | ’
e, Nl It 112

Thus whenever [it, [ gets too small, the relative error in Iit, Il can rise well above 1. In
other words small enough values of Ic, | and Ix, | cannot be calculated accurately in finite

_
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precision arithmetic. Actually when lit, Il is tiny, ? and ¢2B2,; will be tiny. Therefore
current shift o has to be very close to an eigenvalue of T,. Then by (4.3.3) and (4.1.6) we
see that 1/1 ¢;Bi,; | will be very close to the derivative of c,,, at this 6. Therefore tiny
11t 11 signals huge derivative on c;,1. Using Theorem 4.4, we see that |1, and R, ,; have to
be tiny simultaneously.
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